Hidden Markov Models as Priors for Regularized Nonnegative Matrix Factorization in Single-Channel Source Separation
نویسندگان
چکیده
We propose a new method to incorporate rich statistical priors, modeling temporal gain sequences in the solutions of nonnegative matrix factorization (NMF). The proposed method can be used for single-channel source separation (SCSS) applications. In NMF based SCSS, NMF is used to decompose the spectra of the observed mixed signal as a weighted linear combination of a set of trained basis vectors. In this work, the NMF decomposition weights are enforced to consider statistical and temporal prior information on the weight combination patterns that the trained basis vectors can jointly receive for each source in the observed mixed signal. The Hidden Markov Model (HMM) is used as a log-normalized gains (weights) prior model for the NMF solution. The normalization makes the prior models energy independent. HMM is used as a rich model that characterizes the statistics of sequential data. The NMF solutions for the weights are encouraged to increase the log-likelihood with the trained gain prior HMMs while reducing the NMF reconstruction error at the same time.
منابع مشابه
Gaussian Mixture Gain Priors for Regularized Nonnegative Matrix Factorization in Single-Channel Source Separation
We propose a new method to incorporate statistical priors on the solution of the nonnegative matrix factorization (NMF) for single-channel source separation (SCSS) applications. The Gaussian mixture model (GMM) is used as a log-normalized gain prior model for the NMF solution. The normalization makes the prior models energy independent. In NMF based SCSS, NMF is used to decompose the spectra of...
متن کاملRegularized nonnegative matrix factorization using Gaussian mixture priors for supervised single channel source separation
We introduce a new regularized nonnegative matrix factorization (NMF) method for supervised single-channel source separation (SCSS). We propose a new multi-objective cost function which includes the conventional divergence term for the NMF together with a prior likelihood term. The first term measures the divergence between the observed data and the multiplication of basis and gains matrices. T...
متن کاملSingle-Channel Mixture Decomposition Using Bayesian Harmonic Models
We consider the source separation problem for single-channel music signals. After a brief review of existing methods, we focus on decomposing a mixture into components made of harmonic sinusoidal partials. We address this problem in the Bayesian framework by building a probabilistic model of the mixture combining generic priors for harmonicity, spectral envelope, note duration and continuity. E...
متن کاملAn Efficient Posterior Regularized Latent Variable Model for Interactive Sound Source Separation
In applications such as audio denoising, music transcription, music remixing, and audiobased forensics, it is desirable to decompose a single-channel recording into its respective sources. One of the current most effective class of methods to do so is based on nonnegative matrix factorization and related latent variable models. Such techniques, however, typically perform poorly when no isolated...
متن کاملIncorporating Prior Information in Nonnegative Matrix Factorization for Audio Source Separation
In this work, we propose solutions to the problem of audio source separation from a single recording. The audio source signals can be speech, music or any other audio signals. We assume training data for the individual source signals that are present in the mixed signal are available. The training data are used to build a representative model for each source. In most cases, these models are set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012